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We introduce a shell model of turbulence that exhibits improved properties in comparison to the standard
(and very popularGledzer, Ohkitani, and Yamad&OY) model. The nonlinear coupling is chosen to mini-
mize correlations between different shells. In particular, the second-order correlation function is diagonal in the
shell index and the third-order correlation exists only between three consecutive shells. Spurious oscillations in
the scaling regime, which are an annoying feature of the GOY model, are eliminated by our choice of nonlinear
coupling. We demonstrate that the model exhibits multiscaling similar to the GOY model. The scaling expo-
nents are shown to be independent of the viscous mechanism as is expected for Navier-Stokes turbulence and
other shell models. These properties of the model make it optimal for further attempts to achieve understanding
of multiscaling in nonlinear dynamic§S1063-651X98)10007-7

PACS numbdrs): 47.27—i

[. INTRODUCTION presents a discussion of the limitations in computing high-
order exponents. We demonstrate that beyondne needs

Shell models of turbulencgl-5] are simplified carica- exponentially long running times to extract reliable expo-
tures of the equations of fluid mechanics in wave-vector repnents. The evaluation dfy, requires about one million turn-
resentation; typically they exhibit anomalous scaling everpver times of the largest scales. We believe that similar limi-
though their nonlinear interactions are local in wave-numbefations are important also in other examples of multiscaling,
space. Their main advantage is that they can be studied viacluding Navier-Stokes turbulence. Section VII demon-
fast and accurate numerical simulations, in which the valuestrates the universality of the scaling exponents with respect
of the Sca"ng exponents can be determined very precise])ﬁ@ the viscous mechanism, and Sec. VIII offers a short sum-
Our interest in shell models stemmed from our efforts tomary.
develop analytic methods for the calculation of the numerical
values of the scaling exponert§]. In trying to do so we
discovered that the most popular shell model that was treated
in the literature, the so-called Gledzer, Ohkitani, and Ya- A. Basic properties
mada (GOY) model [1,2], poses very tedious calculations : . )
because it exhibits slowly gecaying gorrelations between ve- In the past,.con3|derable attention has been given to one
locity components with different wave numbers. In addition,part'CUIar. version of sheII. models, the so-palled GOY model
it has large oscillations around the power-law behavior in th ,1’2]' .Tr,','s model describes the dyna_mlcs of a cpmplex

) . . . : Fourier” component of a scalar velocity field that is de-

scaling regime, making the numerical calculation of the scal-

ing exponents less obvious than advertised. We therefore d%%}eec:]siif];” ae:(r)]ti: dz;socfl'_if?n d\/gfﬁs ggr:rt;?é zlasn doige'

rived a model that exhibits similar anomalies of the scaling eferred to as the “shell index.” The equations of motion
exponents but much simpler correlation properties, and much : q

better scaling behavior in the inertial range. Since there is 5ead
significant number of researchers who are interested in this

Il. REVIEW OF THE GOY MODEL

n

type of model independent of the analytic calculability of the T i(akysqUpsoUpsqtbKoUnsUn_g
exponents, we decided to present the mqusl se discuss
its good properties, display the results of numerical simula- +CKy_qUn_1Un_2)* — vk2Up+ (1

tions, and compare it to the standard Gledzer, Ohkitani, and
Yamada model. These are the aims of this paper.

In Sec. Il we review the popular GOY model, and explainwhere the asterisk stands for complex conjugation. The wave
the shortcomings that induced us to consider a differenpumbersk, are chosen as a geometric progression
model. Section Il introduces the model, which we propose
to call the Sabra model; we discuss the phase symmetries ko= Kk\D )

. . . . n oN

and correlations, stressing the much improved properties.
Section IV discusses numerical simulations from the algo-
rithmic point of view. Section V contains the results of nu- with N\ being the “shell spacing” parametef,, is a forcing
merical simulations and fit procedures for accurate calculaterm that is restricted to the first shells. The parametés
tions of the scaling exponents. We believe that this sectiothe “viscosity.” In the limit of zero viscosity, one can ar-
contains methods that should be used in the context of ansange the model to have two quadratic invariants. Requiring
shell model, and go beyond naive log-log plots. Section IVthat the energy
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E:E |un|2 (3) anZun:fn>v (10)

and obviouslyp,=0 for n>n . In stationary conditions the
will be conserved leads to the following relation between thdaté of change o8,(k,) vanishes, and we find
coefficientsa, b, andc:

a\Sy(kns 1) +Sslky) + < Salky ) =0. (1D

a+b+c=0. 4)
A second quadratic quantity that is conserved is then This equation has a solution in the inertial interval:
1 c\"
sz (a/c)"ug|2. (5) Sg(kn)—k—n A+B| | |. (12)

Although nonpositive, this second invariant is often asso-The u.nknoyvn coef}‘icientsA and B can ’t,)e found ‘by its
ciated with “helicity.” matching with the “boundary conditions” at smakl,. To

: : : . oo do so we can follow the considerations of Pissareakal.
The main attraction of this model is that it displays mul-
play 4] and sum up Eq(9) on all the shells froom=0 to an

tiscaling in the sense that moments of the velocity depend oh | S . L .
k, as power laws with nontrivial exponents: arbitrary shellM, whereM is in the inertial interval. Using

the conservation law§.e.,a+b+c=0) we derive

(Junl Beck, <@, (6) Y

0= 52 Sp(kn)
n=0

where the scaling exponentg exhibit nonlinear dependence
on g. We expect such scaling laws to appear in the “inertial

range” with shell indexn much larger than the largest shell =2ky[arSz(ky+1) +(b+a)Sy(ky)]+e, (13
index that is effected by the forcing, denoted rgs, and M
much smaller than the shell indices affected by the viscosity, 0= Ez ko) a "
the smallest of which will be denoted ag. =" Sa(Kn c
We will refer to the moments as “structure functions.” "

For eveng=2m we use the usual definition: a —

| =2ku| 2| [arSs(ku 1)+ (b+C)Ss(k) 149,

ko) =(u,[?™, 7
Saml( n) <| n| > @) (14
while for odd g=2m+1 we suggest the following defini- L — i —
tion: where the rate of dissipationand the spurious meaf are
defined as

Szm+1(kn):|m<unflunun+1|un|2(m_l)> (GOY). (8

n. no n
_ —_ a
The definition of the odd structure function differs from the E:nZ:O P, 0= n§=:O p”(E) ' (19
usual definitiorS,, 1(k,) ={|u,|2™*1). Our choice, Eq(8),
is motivated by our reluctance to use the nonanalytic funcSubstituting the solutiorf12) into Egs.(13) and (14), one

tion |uy|. We will see that our definition yields;=1 as an  rg|ates the values ok andB to those of the fluxes and é.
exact result, similar to Kolmogorov's exact result foyin - Now Eq. (12) becomes

three-dimensional fluid turbulence. It was shown by numeri-

cal simulations that the choice of parameters2 and 1 — c\"
(a,b,c)=(1,-0.5-0.5) leads to scaling exponens that Sa(kn)= 2k (a=c) —6+#5) : (16)
are numerically close to those measured in experimental hy- "
drodynamic turbulence. There are four different types of functional dependence of
S;(kn) onk,, determined by the ratio/a, as illustrated at
B. Additional properties Fig. 1. Forc/a<0, this function has period-two oscillations

The GOY model shares with Navier-Stokes turbulence arlihat are caused by th_e existgncg of a nonzero flu?< of Fhe
analog of the 4/5 law. Assuming stationarity and using these_cond_lntegral of motion, which |s_n0t pos_|t|vely_d_ef|ned In
quadratic invariants introduced above, we can obtain twdMiS region. Forc/a>0, the second integral is positively de-

identities involving third-order correlations. Multiplying Eq. f'r:‘ed and tdh‘fal funk():tion is mpnoltonic. I':Wr?' <I_l,_the rcc)!e of
(1) by u* we have, neglecting viscosity, the second flux becomes irrelevant in the limit>o. Con-

sequently the deviation dBs(k,) from the scale invariant

d C behaviorS;(k,)«1/k, decreases as increases, see panels
&Sz(kn)=2ko7\n Ak Sa(kn+1) +0Sy(Kn) + - Sa(kn-1) (a) and(b) of Fig. 1. In contrast, in the cage/a|>1 the role
of the energy flux becomes irrelevant in the limit of-oo.
+pn, (9) In this case the properties of the model are completely deter-

mined by the flux of the second integral, see parielsand
where (d) of Fig. 1. In the sequel we will focus on the region
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£ 50 £ <0 11l. OUR MODEL: DEFINITION AND MAIN FEATURES
a a
A. Our model
(a) 04 (b) ) ) )
1.0 c We propose the following equation of motion for our
505 0.2 |7‘<1 model:
0 0 du“ ; * *
dt =i(akn+1Un+2Uny T bKaUns UL 3= CKy—1Up—1Un—2)
200! (©) 50 d
tw 2
~ 100 0 |%|>1 —vkupt i, (21)
N
108 50 where for simplicity we assume that the coefficieatsb,
02 4 6 8 0 2 4 6 8 andc are real. As in the GOY model, conservation of energy
n n in the inviscid limit is obtained i+b+c=0.

N ) The fundamental difference with the GOY model lies in
FIG. 1. Plots of the quantities, = —kSs(kn) with Sy(kn) taken  the number of complex conjugation operators used in the
as the stationary solutior@6). The fluxese and & are related by  nonlinear terms. We show in the following that this slight
e=cdla anda=1. The four panels have different valueswf(a)  change is responsible for a difference in the phase symme-
€=0.5,(b) c=-0.5,(c) c=2,(d) c=—2. tries of the two models. As a consequence, our model will
exhibit shorter-ranged correlations than the GOY model.
|c/a]<1. The reason for this is that Navier-Stokes turbu-Apart from this difference, all the calculations described in
lence never exhibits a region in which the energy integral ighe preceding section remain valid. Both models share the
irrelevant. same quadratic invariants and one can derive for the our
As we discussed, even in the “physical” region in which model another analog of the 4/5 law. We need to replace the
|c/a|<1, the subleading contributionsvhich are affected definition of the odd order correlato(8) according to
by the second integraimay influence the apparent scaling

behavior of the leading scale invariant contributions, which S3(kn) =IM(Un_1UnU7 . 1),
are determined by the energy integral. In the regiof 2m=1), %
<c/a<0, which is commonly discussed in literature, sub- Szm+1(Kn) = IM(Up_1Up| Uy upy1) (Ours.

leading contributions lead to period-two oscillations that de- (22

crease upon the increase of These introduce additional \yte that the shell inden is related to the intermediate shell
problems in determining the scaling exponents. A S'mplelnvolved in the correlation function.

way to eliminate this complication is to consider a “helicity-
free” forcing chosen such that the flux of the second integral
(“helicity” ) would vanish identically. This is easilly
achieved by selecting the forcing of the two first shells. From Let us examine the phase transformation:
Eqg. (15) we deduce

B. Phase symmetry and correlations

Up— upexpli6y). (23

5=0 at cpy+ap;=0, p,=pz=---=0. (17) The equations of motion of both the GOY and our models
remain invariant under such transformations, provided that

. . o he ph
For a random force that is Gaussian afdorrelated in time, the phase®, are related by

Oh-1+0n+6,,1=0 (GOY),

fo(Dfm(t))=02A mé(t—1"), 18
< n(DFm( )> OphBnm ( ) (18 0, 1+ 60— 6,.1=0 (Ours. (24)
one gets The phase9,, can then be obtained iteratively froy and
0,, namely
_ 2
Pn=p- A9 01,3p=01, 63p.2=0,, 63=— 6,0, (GOY);
(25)
For this type of forcing the condition of zero “helicity” flux
(17) is achieved by choosing the forcing to have the mean- _i n-2_ n-2 n-1_ n-1
square amplitudes On= \/5[01(6” a= )t Op(a "—a” )],
2 2_ 1

Under this condition the period-two oscillations disappear. Although Eq.(26) has irrational numbers, it is easy to check
The GOY model has some properties that make it undegat

sirable for further analytic studies. It is best to exhibit these
in comparison with the newand we believe superipmodel. 0,="1p,01+5S,05, (27)
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wherer, ands, are integer numbers that grow exponentially ds,(k,) dug(t)
with n. =2Re{ —¢ up (t)
Note that phaseg; and 6, satisfy the equations of motion
=—21m [aky(uyup; 1Un o)+ bKe(UR_1UfUn )

do;,  do,

=0 4 =0 (28) — CKn—1(Un-2Un- 12U )] = 20Ka(UgUs ) + Py,

(33

and they can be randomized by any small external forcing. Ivhere the forcing contributiop, was defined in Eq(10).
means that any correlation functions that contain the phases With the definition(22) of Sy(k,), this translates to the
6., 6, or both phases must be zero. In our direct numericaP@lance equatiots) derived for the GOY model. Note that

simulations, see below, we confirmed that this is indeed th esE twgon;odelsa dlifferdinEtheZ(Z:iel;initions Sﬁ(gn)lz E‘ﬂ (8|)
case. In the our model there is only one nonzero secon or the model and Eq(22) for our model. Clearly,

order structure function. All nondiagonal correlation func—mélé’é)l gnguglmﬁge;eg?jrg]seosfatrr?s ggﬂ\}@m%sdg} g:gcssiz din
tions vanish in our model,

Sec. II B are relevant for our model as well. In particular,
one may eliminate the period-two oscillations by a proper
S,(Kn Km) =(Upur)=0 n#m (Ours. (290  choice(17) or (20) of the forcing.

The reader should note, however, that in the case of the

GOY model the second- and the third-order structure func-

This is not the case for the GOY model, for which there aions have additional long-range correlations that do not ap-

correlations between shells separated by multiples of threebear in the balance equation. This is a flaw of the GOY

model that is eliminated in the context of our model, where
Sy(kn,Kni3p)#0  (GOY). (30)  what you see is what exists. Note also that the long-range
correlations for the GOY model exist between shells sepa-
. L . . rated by multiples of thregsee, for example, Eq$30) and
The relative simplicity of our model is seen also with regards 3q)| These correlations are responsible for period-three os-
to higher-order structure functions. Our model has only On&;jiations in scaling plots of the GOY model. These annoying
nonzero third-order structure functid®;(k,) that couples  ggillations are absent in our model by construction. Thus
three consecutive shells as defined by E2R). All other  ater elimination of the period-two oscillationgusing
third-order structure functions vanish by averaging over the:helicity-free” forcing) one finds scale invariant behavior of
random phase®,; and 6. In contrast, in the GOY model the structure functions almost from the very begining of the
there exists an infinite double set of nonvanishing correlationnertial interval.
functions of third order with givem. These are

IV. ASPECTS OF THE NUMERICAL INTEGRATION:

STIFFNESS, FORCING, AND DISSIPATION
<unun+3pun+l+3q>¢o (GOY)- (31)

The numerical investigation of our model, as of any other

The same phenomenon occurs also for higher-order correl fiff set of differential equations, calls for some care. We
erefore dedicate this section to a discussion of the issues

tion functions. In the our model the number of nonzero cor-, ) )
relation functions with finiten is much smaller than the cor- mvolve_d. A reade_r who wishes to consider the results only
responding functions in the GOY model, making it more ¢@" skip this section and read the next one.
convenient for theoretical analysis.

To conclude this section, we formulate a “conservation
law” that determines which correlation functions of our ~ The main difficulty in integrating a shell model stems

model are nonzero. Introduce a quasimomen]‘,quor n ObViOUSly from the stiffness of the system, i.e., we are con-
shell by cerned with a wide range of time scales in the system.

Within the inertial range, the equation is dominated by the
nonlinear terms so that the natural time scakethe Kol-
mogorov approximationof the nth shell scales as

A. Stiffness

KnEanv (32)

wherea is the golden meany?= a+ 1. One can check that 1 1

in our model the only nonzero correlation functions satisfy ™ mkaIB

the following conservation lawthe sum of incoming quasi- .

momenta (associated with is equal to the sum of outgoing Within the viscous range, however, the dominant term is the

guasimomenta (associated witi)u viscous one and if theath shell lies in this subrange, its
natural time becomes

(34)

C. Additional properties 1

In this subsection we show that our model exhibits the THNW' (35
n

properties of the GOY model that were revealed in Sec. Il B.
With this aim we compute from Eq21) the time deriva- We can now estimate the global stiffness of the system by
tive of Sy(k,,,t): quoting the ratio of the extremal time scales:
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8.0 ‘ \
E~ l EN(E) 2/3( @) ZN)\Z[N+2(N*nd)*1]/3 (36) v=1.0x10"
momg e kg | )
6.0 - e—ov:&Oxloj 1
The global stiffness of the system thus depends both on the E :i:éﬁiiﬁ
total number of shellN and on the width of the viscous f_
region. Most of the results published in the literature are %40 .
obtained with 22 shells, a forcing restricted to the first shell =
and a viscous boundary beginning about the 18th shell. In 33
this typical case, we have / 7y~ 6.6x 10°. In this paper we =20t :
typically use N=34 with about six shells in the viscous )
range. For this choice, / 7y~ 10°. /
To deal with this stiffness we chose from the library 0.0 : - ‘ : :
SLATEC [7] the backward differentiation routine DDEBDF 00 40 80 120 160 200 240
[8]. This routine is specially dedicated to very stiff problems. o

Although ra_ther fast, its 'precision is not exce'pt'ional and itis giG. 2. Modulus olu,, in our model obtained by integration over
rather sensitive to functions that are not sufficiently smoothsog turnover time scales with values of the viscosities as shown in
In cases of failure of the backward differentiation r0utine, the[he figure. The dashed line represents the expected asymptotic be-
code switches automatically to a 4/5th order Runge-Kuttaavior in the deep viscous regime. The slope of this line is given by
algorithm. Both routines adapt their step size to fulfill a pre-Eq. (39).

scribed precision requirement. The backward differentiation

routine adapts in addition its order between 1 to 5. Ko\ ¥
Uy knexp{ —(k—> } (39
d
B. Random forcing
We generate the random forcing to guarantee zero meaWhere[lO]
value of the velocity. We use a time correlated noise, with a 1+5
correlation time chosen to be the natural time scale at the x=log, (40)
forcing shell: 7= 1/(knLunL). Denoting the forcing ternf, in 2

case of an exponential correlation, the evolutiorf &f ruled

. We have studied the influence of the width of the viscous
by the equation

range on this exponential behavior. The results obtained for a
f system of 22 shells with various viscosities are summarized
&fz - ;+ 7, (370 in Fig. 2, where we can see that the scaling behavior in the
viscous range approaches slowly the asymptotic prediction.
In the case of the largest viscosity useds8x 104, we
where 7 is an uncorrelated noise. The presence of this nevygte that the asymptotic behavior startsnat15 while ng
equation in the system could in principle make the integra=-g_ Wwe can then consider that this width of six shells is the
tion more cumbersome. Fortunately, the system being stiffminimal one needed to properly describe the viscous range.
the typical time step used in the integration is very small |n the inertial interval dimensional reasoning leads to K41

compared with the forcing time scate(six orders of mag- S (ol V13 ; ;
nitude in a typical calculation with 22 shellsThis allows us E%alégg).'un (€/kn) ™ This formula may be matched with

to integratef separately with a first-order scheme. In the

code, the forcing is updated at each new call of the integra- k. \ 13 K\ 43 K\ X
tor. The Gaussian exponentially correlated random forcing is Uy~U, (ﬂ) 1+ 2 ex;{ - (_“) } (42)
computed (after proper initialization according to a first- L ky Kqg Kq

order scheme proposed by Fekal. [9]:
whereu, ~/f/k, and kd~(f3/v6knL)1’8. We will see that

f(t+dt)=f(t)E+o—2(1—E?)log,o a)expli2m ), although the actual values of the exponents change due to
(3g)  Multiscaling, the form of the solution is rather close to real-
ity, and Eq.(41) is a good starting point for numerical fits.

whereE=exp(—dt/7), o is the standard deviation ¢f and
a and B two random numbers between 0 and 1. V. NUMERICAL SIMULATIONS: RESULTS

A careful determination of the scaling exponents is a deli-

C. Dimensional analysis cate issue. With an infinite inertial range, we expect pure
scaling laws. Despite its large size, the inertial range that we
have in shell models remains finite. The most widely used
method to determine the exponent is based on a linear re-
gression or on the determination of a local slddd] in

of the order ofvk3uy, . In the viscous range>ny one can  |og-log scale. In these methods one needs a criterion to
guess a generalized exponential form: choose the fitting range. The uncertainty in the scaling expo-

For the purpose of our numerical fits we consider, follow-
ing [10], the dissipative boundany,, where the dissipative
term balances the nonlinear term. At this boundaglyﬁd is
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nents comes obviously from the quality of the regression but 00 ' '
also largely from the number of shells taken into consider-
ation. We want to make the point here that these methods ar
not reliable, giving rise to a lot of confusion in the literature.
One needs to fit a whole function to the inertial and dissipa-
tive ranges simultaneously to achieve reliable estimates o
the exponents in the inertial range. o

The definition of the scaling exponents can be a matter of ==
choice of the statistical object. Our preferred definition is =
Egs.(7) and (22) for even and odd exponents, respectively. c_%n
Two alternative choices were widely used in the literature,
respectively based on the modulus of the velocity and on the
energy flux:

—

)

(42

Sq(kn)=(|uq|%, 800 : ‘

1 L L L
10.0 15.0 20.0 25.0

log,(k )

FIG. 3. Log-log plot of the structure functior®(k,) to Ss(k)
vs k,, and of the results obtained using the fitting form@#4d). The
structure functions are represented by the symbols and the fits by
the lines.
The latter definition allowed for a higher numerical precision
in the context of the GOY model because the energy flux isn order to limit the effect of the boundaries. It turns out that
not affected either by the genuine dynamical oscillatidue  the minimum found in this procedure is shags a function
to the helicity fluy or by the period-three oscillations. Be- ¢ {) providedthat we have a good fit of th&, over its
yond these different definitions of the statistical objects, weyhole range. To estimate the relative error in the scaling
can also modify the definition of the scaling exponents themexponentsgq we arbitrarily computed the values ¢f, that
selves. In the framework of so-called “extended self-agree with values of that are twice the minimum value.
similarity” (ESS, instead of writingS,(k,) =Ak ‘3 one as-  These are the errors reported in all the tables below.
sumes a scaling relation between the structure functions of In all our simulations we used the parameter valaes
orderq and of order 3S,(kn) = Al S(kp)]. =1, b=c=-0.5, ando/0,=0.7. This choice eliminates

These different definitions give priori different sets of the flux of helicity and correspondingly the period-two oscil-
scaling exponents. An efficient comparison, however, is diflations in the scaling plots. Typical fits for the structure func-
ficult to set up in the case of the GOY model because of théions from S, to Sg for simulations with 34 shells (=4
various oscillations polluting the data. Moreover, none of thex 10~ ,=5x10"2) are shown in Fig. 3.
techniques described so far took explicitly into account the In Table | we present the computed scaling exponents
finite size effects. The fitting procedure that we describe novassociated with three different definitionsgpbrder correla-
is an attempt to do so, and one of the results is that th&on functions. These results offer a very strong indication
exponents are universal, independéot given parametejs that the three scaling exponentsgpbrder correlation func-
of the choice of the statistical object. tions (with givenq) are all the same.

In light of the interpolation formul#&41), and encouraged On the other hand, we can make the point that EIS$in
by the fact that the dissipative, stretched exponential behavts standard usage does not seem be a useful approach in the
ior is rather nicely obeyed, we fit all our spectra to the fol-present context for computing more accurate scaling expo-
lowing fit formula: nents. In Fig. 4 we presel®,(k,) both as a function ok,

Hq
exr{ -

and as a function o8;(k,). Even though superficially the
This guarantees the right behavior at both asymptotics. Note TABLE I. Summary of the scaling exponents computed with a

30.0
Salkn) =([ 2 **)
=([Im[ax upUp Uy~ Cunflunu:+1]|q/3>-

(43

(ko) = 2 S Y
o n)_k_ff‘ kag) | (44)

K, ESS way of plotting seems to yield a longer linear plot, a
1+ aqr—

Ka,q
model of 34 shells.

careful examination shows a break in the inertial range scal-
that we do not make any hypothesis on the form of the tran-

sition between the power law and the dissipative regimes. In

fitting we minimize the following error function: a S {unl (=l*
. 1 0.393:0.006 0.3930.007
o \/E (1_ IOglOFq(kn)) 45) 2 0.720-0.008  0.726:0.008  0.718:0.007
m 10910Sq(Kn) | 3 1.000+ 0.005 1.0030.009 1.00@-0.005
4 1.256+0.012 1.256:0.012 1.2490.003
HereS, refers to the numerically obtained structure function. 5 1.479-0.006 1.4880.013 1.47%0.004
We use the same fit formula for all three definitions of sta- 6 1.706+0.015 1.706:0.015 1.6930.006
tistical objects. The sum in E¢45) was computed over the 7 1.901+0.010 1.916:0.020 1.8930.010

whole range except the two first shells and the two last shells
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0.0 ' ' ' of ¢,. Therefore, employing an adequate fit in this region
I (which uses additionaa priori information contained in the
-10.0 1 balance equatigrallows one to be more accurate. Note that
we do not have such simple balance equations for higher-
200 1 order correlation functions and therefore a generalization of
—_ the procedure for higher orders is not available.
oF 300 1
E VI. TESTS OF THE STATISTICAL QUALITY
oy 00 ¢ ] OF THE NUMERICAL DATA
= '
500 - oo SIS,(k)] _ In evaluating the scaling_exponer% one has to make
s 8,0k ) sure that the structure functioigg(k,) are calculated prop-
600 L | erly. This means that) the averaging time is sufficient for
g the representative statistics, afiid the numerical procedure
70,0 ‘ : : ‘ : produces an accurate realizatiog(t).
<100 0.0 10.0 20.0 30.0 40.0 50.0
log,(k N
2,(k,) A. The PDF test for the averaging time
FIG. 4. Log-log plot ofSy(k,) vs k, and vsSs(k,), respec- In intermittent statistics one may need to wait a rather

tiVe'y. This p|0t shows that at least for this mOde', and when the|ong time before the appearance of rare events that neverthe-
accuracy is sufficiently high, ESS is_ quite useless in increasing thgags contribute significantly to the statisticsgpbrder struc-
effective range of power-law behavior. ture functions of shells. This issue was carefully discussed

_ ) o by Leveque and Shgl3] in numerical simulations of the

ing that occurs precisely at the crossover to dissipative begoy model. They considered the waiting tirfi@, g, which
havior. We gain nothing from ESS for this model. is needed to evaluate safayorder correlations oh shells.

Nevertheless, for the limited aim of computing a preciserhey argued that times of the order ok&.0° turnover times
value of{,, we can make use of the ESS idea provided thal the n shell are required fog~ 15.

we fit the whole range. To do this, we have to impose addi-
tional information on the fitting function. For the case &f
we can employ the information contained in the balanc
equation(9), closing it with the ansatz

In the beginning of this subsection we estimate analyti-
cally the waiting timeT, ,, which is needed to observe, say,
€100 events contributing t8,4(Kk,). This is done using the
probability W, 4 to observe one rare event in which the value
of the velocityu, hits the range that contributes mostly to the
- L n

Sa(Kn) =Az| S(kn) 2. 46 statistics 0fSyq(ky). Denoting by, the decorrelation time

Using Eq.(46) and introducingz,,= —k,Ss(k,,), we can re- on thenth shell we estimate

write Eq.(9) as Tn,q~ 1007, /W, 4. (48

Zh41=20 17 B(Z0-1—23) = (K /K, )?72[Z,|%2,  (47)  The probabilityW, , may be related to the PDF of the ve-
locity at thenth shell, P,(u). For the sake of this estimate
wherek, = (vA,)¢27?) anda=1. we takeP,(u) as a stretched exponential. We do not imply
Givenz, andz;, one can iteratively calculai®, and, con-  that this distribution function is realized in this modl fact
sequently,S;(k,) andS,(k,) in the range ok, for which  we know that it is not consistent with multiscalingVe use
the ESS ansatz is valid with reasonable accuracy. Assumingonly for the sake of an order of magnitude analytical esti-
for simplicity zo=2z,, the values ofz, are defined by three mate of the waiting time. Consider
free parameters,,As, 5.
As an example, we applied this procedure to the numeri- Pa.(v)=Cexd —|v|°], (49
cal data calculated witha=1, b=-0.5, and v=4
x 10 ! The values of fitting parameters corresponding towherev is dimensionless velocity =u/ug, Up is a char-
the global minimum of the functionals (45) are z, acteristic velocity,uj=S,(k,), and C is a normalization
=0.001 26, A,=1.80, andZ,=0.728. To estimate the accu- constant. One compute,(k,) as
racy of the chosen fit parameters, we have studied the depen-
dence off on the deviationél,, JA,, and dz, from their
optimal values with two other parameters fixed at the optimal
values. As before, we define the error bar for each parameter
interval for which¢ takes on values that are twice the value The integrand in Eq(50) has a maximum at =v,, where
at the minimum. With this definition z,=0.001 26
+0.000 02, A,=1.80+0.06, and/,=0.728+0.002. ve=(20/8)*". (51)
The accuracy reached here is higher than in the proce-
dures described above. Most of the errors in the fit appedrrom Eq.(49) we can estimate the probability that will
from the crossover region from power law to exponentialattain a value within an interval of order afg~1 around
decay. The analytically calculatesh(k,) and S3(k,) near v, which was denoted ad/, ,. This interval ofv values
the onset of the viscous range are very sensitive to the valueontributes maximally t&,,. Namely,

o)

Salk) =u3* [ 0P}, (50
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FIG. 5. Plots of (/ug)IP3((u/u)?) for the third shell with FIG. 6. Same as Fig. 5 but for shell no. 7. The solid line repre-

different values ofy as shown in the figures. In every figure results sents a longer run of410*r;, and the dashed line a shorter run of
are presented for 625@olid line) and 625(dashed lingturnover 4000y,

times 75. Already S; is not accurate even with the longer run.
6250 turnover times. This run is too short for this purpose.

W, g~ Pn(vg)=Cexd —2q/4]. (520  The same analysis for shell no.(in the bulk of the inertial
interval), with two runs of 400@,, shows that the improve-
Equation(52) leads to the estimate ment of the long run is not sufficierisee Fig. . We can
Th.q~ 100r,exp( 20/ 3), (53 hardly computeSg from the longer run. In the viscous end of
the inertial interval(say for shell no. 12our run was ten
where 7, is a characteristic decorrelation time fo's shell.  times longer (4 10°7;,) and the results can be seen in Fig.

The timeT, 4 is exponentially large. For instance, fé=1 7. Now Sg can be computed reasonably well, k8 is still
and Xy=10, the averaging time required for accurate meaburied in noise. Higher-order structure functions cannot be

surement ofS,(k,) is of the order of estimated at all. Lastly, in Fig. 8 we present results for shell
no. 16, which belongs to the beginning of the viscous sub-
T q=100e17,~2x10°7,,. (54  range. Here we have an even longer run of>x218°74,

resulting in a marginal improvement in the ability to com-
Admittedly this evaluation is rather rough. More accuratepute Sio.

evaluations should be based on the numerically computed For the evaluation of the scaling exponégtone needs to
probability distribution functions as done for the GOY mOde'computeSq(kn) throughout the inertial interval. It appears
in [13]. We plot the numerical value ofu(ug)®"P(u/uj)  that we can determine scaling exponents uggdrom runs
versus (1/ug)? and see how noisy is the region that gives thewhose duration is about 500@onges} turnover times. In
main contribution taS,,. Such plots for the third shell are order to find exponents up t we need runs of minimal
presented at Fig. 5 for two realizations, one averaged oveduration of 18 (longes} turnover times. An accurate deter-
625 and the other over 6250 turnover times of this shgll, mination of the exponent;, calls for runs of about one
In panels(a), (b), and(c) we show the integrands f&,, S,, million turnover times. Note that this estimate is in agree-
andS;. One sees th&, andS, can be evaluated reasonably ment with the simple analytical formul#54) presented
well even from the shorter run, whil8; can be computed above. Note also that these conclusions may very well be
only from the longer run. Panels), (e), and(f) present the applicable also for the analysis of experimental data of hy-
analysis forSg, S;g9, andS,, correspondingly. The evalua- drodynamic turbulence. The scaling exponents with our
tion of Sg is questionable even when the long run is used; thehoice of parameters in our model correspond to those of
results forSyy, S,;,, etc. are meaningless even for the run of Navier-Stokes turbulence, and it is likely that the far end of
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2
the probability distribution functions is as hard to reproduce C(k,)= aSs(kn+1)[Kn+ 1+ bl Sy(kn) [kn — vknSa(kn) _
in experiments as in our simulations. Since very long runs " ¢[Ss(kn-1)|Kn-1
are rarely available in experimental data, this should serve as (55
a warning that stated numgrical values qf higher scaling eXt the numerical data satisfy the balance equati@naccu-
ponents should be taken with great caution. rately, the coefficient€(k,) have to be unity for alh. In
Fig. 9 we show that in our simulations this relation between
_ S;(ky) andS,(k,,) is obeyed with accuracy better than 0.1%.
B. Test of the numerical procedure However, this does not mean that less frequent events that
. . . . contribute to higher-order correlation functions are also cor-
The averaging time is not the only factor affecting the

) ) , . rectly reproduced. To check the statistical reliability of
quality of the numerical data. Since the time dependence of (, 'y gne can use the second equation from the hierarchy,
Un(t) is highly intermittent, we need to test carefully the \ynich connectsS,(k,) and Ss(k,,) and so on. To measure
ability of the numerics to cope with this. We need to checkip;g accuracy one can define, analogouslZi&,), a gener-
that the statistical characteristics of the proces&) obey  4jized balance Coeﬁicie,@gzq) _To define it we consider the
the exact relations imposed on the correlation functions. Ajme derivative ofS,

K,):
simple test can be built around the first equation of the infi- alkn)
nite hierarchy relatingSy(k,) and Sy, (k). Consider Eq. dSyq(ky) 2q-1)
(9) relating S, and S;. In the inertial range, where the vis- at —2q1m [aky; 1{UR UT, 1 Un 2 Un|*97Y)
cous term may be neglected, the largest term on the left-hand - 2q-1)
side (proportional toc) is balanced by the two first terms on + bKn(UA_ 1UR U o up[ 79 Y)
the left-hand side. In the viscous range, wh8gék,,) drops — Ky 4(Upy ol ¥ Uy |20 )]
to zero very quickly, this term is balanced by the viscous n-1\En-28n=15n [Hn

term on the right-hand side. It is thus useful to rewrite Eq. _zqyk§<|un|ZQ>_ (56)
(9) in the form of a “balance coefficientTkeeping in mind

that S3(k,) is negative and,(k,) is positive: In the stationary case this gives
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FIG. 9. Balance coefficient(k,) for 22 shellsb=—0.5, aver-

age over 2500 largest turnover times. FIG. 10. Coefficient<(k,) [see Eq(55)] obtained for a model

of 34 shells integrated over 250 forcing turnover time scales with

B dissipative terms proportional &f, ki, andk, respectively.
a'%q+ 1(kn+1) I(n-%—l"' bS2q+ 1(kn)kn+ Cszq-kl(kn—l)kn—l

= vk2Sq(Kn). (57)  of shell models with eddy viscosity, the inertial exponents
) ] ) were independent of the particular definition used for the
Here S;q., is defined by Eq(22) and we have introduced eddy viscosity. Recently we made the pdih6] that within
two additional structure functions: the GOY model this phenomenon is nothing but a finite size
effect that disappears when one increases the size of the in-
. B ertial range. We dedicate this section to showing that the
Szq+1(Kn) =IM(Un_1UUr, 1 [Up1P97Y). (58)  same is true for the our model.
. o . Before discussing the results, we need to test our simula-
One can rewrite Eq57), similarly to Eq.(55), inthe form of  ions for accuracy of the evaluation of the structure func-
a balance coefficient: tions. To this aim we present in Fig. 10 the balance coeffi-
cient ng) (cf. Sec. VIB for m=1,2,3. We tested the
_ ) accuracy in a relatively short run of 250 forcing turnover
aS5q+1(Kn+1)Kn+ 1+ bSyq4 1 (Kn)Kn+ vKSq(kn) time scales. The results indicate that even for this short run
C|S;q+1(kn71)|kn71 ' the accuracy of determination of the two lowest-order struc-
(59) ture functions is about 0.1% in the inertial range, but only
about 1% in the dissipative range. Note that hyperviscosity
Again, if the numerical data reproduce the balance equatiomakes the determination of the structure functions in the
(57), the coefficientC®® has to be unity for alh. Testing  Vviscous rangéstarting with the crossover regipsomewhat
this fact should be an integral part of the numerical solutiorless accurate. In order to reduce the source of uncertainty and
of this model and similar models in the future. without loss of generality, we measured the exponents from
the flux-based structure functio43).
In the following, we focus on the second- and third-order
VII. UNIVERSALITY WITH RESPECT structure functions, using runs of duration 1500 forcing turn-
TO HYPERVISCOSITY over time sgales, and offer a careful C_alculatlon of their ap-
parent scaling exponents as a function of the number of
“Hyperviscosity” in shell models amounts to changing shells used in the simulations, and of the order of the hyper-
the viscous term in Eq21) with a term vkﬁm with m>1.  viscosity termm. We will show that the hyperviscous cor-
The effect of hyperviscosity on shell models is a matter ofrection affects a finite number of shells in the vicinity of the
controversy. It was originally argued by She and Levequeviscous transition. This number is relatively large, about ten
[11] that in the GOY model there was no universality of theshells or three decades of “length scales.” The reason for
scaling exponents, the value of the latter being strongly dethis large effect is that we have a discrete model in which
pendent on the dissipation mechanism. The same observati@ach shell interacts with four nearest neighbors. This means
has been made by Ditlevsgf4]. If true, this observation that with the standard shell spacing paramater2, the lo-
would cast a doubt either on the relevance of shell models igal interactions spread over more than one decade of length
turbulence studies or on one of the most widely acceptedcales. Nevertheless, we show now that this number remains
hypotheses in fluid turbulence: the universality of the expo-unchanged when we increase the size of the inertial range,
nents in the scaling range. Note, for example, that manyndicating a mere finite size effect.
direct simulations of 3D turbulence use hyperviscosity. On To see this point examine Figs. 11 and 12, in which we
the other hand, Benait al. have showed15] that in the case  superpose results fég,2 5(k,) with m=2 andm=3, respec-

2q) _
Cg q)—
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FIG. 11. Log-log plots ok, 3(k,) vs k;, in case of hypervis- FIG. 13. Apparent scaling exponedt as a function of the
cosity of indexm=2 with different numbers of shells and viscosi- square of the inverse extent of the inertial interval, fa=1

ties. The collapse has been obtained by shifting the abscissa. Thgjrcles, m=2 (squares andm=3 (diamonds. The tendency to-
solid line shows the constant behavior expected theoretically. Ongards ;=1 is evident.

observes clearly that the departure from this constant value only

occurs in a region of about ten shells near to the viscous transitiorpectation(40). We obtainedk=0.75 form=2 andx=0.90
When the inertial range is large enough, the predicted behavior ifgr m=3, while x=0.69 for m=1. These values, which
recovered. seem to be independent of the order of the structure function,

_ . _ o . _ . have then been used in the fitting procedure. The results for
tively, which were obtained in eight different simulations as;, and ¢, with normal viscosity were quite independent of

detailed in the figures. The plots are as afunction of(lkd  N. On the contrary, hyperviscosity caused an apparent
with an appro_prlate shlf_t in the abscissa. We see Fhat in au:hange in scaling exponents. However, as can be seen in
cases the region of deviation from a constant function, assQ=igs, 13 and 14, these values can be plotted as a function of

ciated_ with the theoretical expectatiqn E6), is of constant 1[logy(k4/k,) ]2 and they converge, fde;— = to the values
magnitude and of constant extent, independent @r the  gptained form=1. Note that log(ky/K,) is precisely the
total number of shells. This is a clear indication that Whe”length of the inertial interval, ankly was obtained from the

the number of shells increases to infinity, the scaling expog;t.
nent{;=1 will be observed in a universal manner.

Another way to reach the same conclusion is obtained by
fitting structure functions as explained in Sec. VI to the for-
mula (44). We ran simulations fom=1, 2, and 3 withN We presented a shell model of turbulence, and demon-
=22, 28, and 34. The exponenrtof the viscous tail foom  strated its improved properties in terms of simpler, shorter-
= 2,3 exhibits significant departures from its dimensional ex-

VIIl. SUMMARY
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FIG. 14. Apparent scaling exponeg as a function of the
FIG. 12. Same as Fig. 11 in the case of hyperviscosity of indexsquare of the inverse extent of the inertial interval, for=1
m=23. Note that the amplitude of the bump is larger than in the(circles, m=2 (squares andm= 3 (diamond$. The tendency to-

wards({, as found for normal viscosityn=1 is evident.
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range correlations. The model exhibits anomalous scalingous damping. This universality was questioned in the recent
similar to the GOY model and to Navier-Stokes turbulenceliterature but we showed here for our model and previously
In the future we will argue that the improved properties of[16] for the GOY model that there is no reason to doubt it.
this model help considerably in seeking analytic methods for

the ca_lculatlons_of the s_callng exponents. We usgd the op- ACKNOWLEDGMENTS
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