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Improved shell model of turbulence
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We introduce a shell model of turbulence that exhibits improved properties in comparison to the standard
~and very popular! Gledzer, Ohkitani, and Yamada~GOY! model. The nonlinear coupling is chosen to mini-
mize correlations between different shells. In particular, the second-order correlation function is diagonal in the
shell index and the third-order correlation exists only between three consecutive shells. Spurious oscillations in
the scaling regime, which are an annoying feature of the GOY model, are eliminated by our choice of nonlinear
coupling. We demonstrate that the model exhibits multiscaling similar to the GOY model. The scaling expo-
nents are shown to be independent of the viscous mechanism as is expected for Navier-Stokes turbulence and
other shell models. These properties of the model make it optimal for further attempts to achieve understanding
of multiscaling in nonlinear dynamics.@S1063-651X~98!10007-7#

PACS number~s!: 47.27.2i
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I. INTRODUCTION

Shell models of turbulence@1–5# are simplified carica-
tures of the equations of fluid mechanics in wave-vector r
resentation; typically they exhibit anomalous scaling ev
though their nonlinear interactions are local in wave-num
space. Their main advantage is that they can be studied
fast and accurate numerical simulations, in which the val
of the scaling exponents can be determined very precis
Our interest in shell models stemmed from our efforts
develop analytic methods for the calculation of the numer
values of the scaling exponents@6#. In trying to do so we
discovered that the most popular shell model that was tre
in the literature, the so-called Gledzer, Ohkitani, and Y
mada ~GOY! model @1,2#, poses very tedious calculation
because it exhibits slowly decaying correlations between
locity components with different wave numbers. In additio
it has large oscillations around the power-law behavior in
scaling regime, making the numerical calculation of the sc
ing exponents less obvious than advertised. We therefore
rived a model that exhibits similar anomalies of the scal
exponents but much simpler correlation properties, and m
better scaling behavior in the inertial range. Since there
significant number of researchers who are interested in
type of model independent of the analytic calculability of t
exponents, we decided to present the modelper se, discuss
its good properties, display the results of numerical simu
tions, and compare it to the standard Gledzer, Ohkitani,
Yamada model. These are the aims of this paper.

In Sec. II we review the popular GOY model, and expla
the shortcomings that induced us to consider a differ
model. Section III introduces the model, which we propo
to call the Sabra model; we discuss the phase symme
and correlations, stressing the much improved proper
Section IV discusses numerical simulations from the al
rithmic point of view. Section V contains the results of n
merical simulations and fit procedures for accurate calc
tions of the scaling exponents. We believe that this sec
contains methods that should be used in the context of
shell model, and go beyond naive log-log plots. Section
PRE 581063-651X/98/58~2!/1811~12!/$15.00
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presents a discussion of the limitations in computing hig
order exponents. We demonstrate that beyondz8 one needs
exponentially long running times to extract reliable exp
nents. The evaluation ofz10 requires about one million turn
over times of the largest scales. We believe that similar lim
tations are important also in other examples of multiscali
including Navier-Stokes turbulence. Section VII demo
strates the universality of the scaling exponents with resp
to the viscous mechanism, and Sec. VIII offers a short su
mary.

II. REVIEW OF THE GOY MODEL

A. Basic properties

In the past, considerable attention has been given to
particular version of shell models, the so-called GOY mo
@1,2#. This model describes the dynamics of a comp
‘‘Fourier’’ component of a scalar velocity field that is de
noted as un . The associated wave number is on
dimensional, denoted askn . The indexn is discrete, and is
referred to as the ‘‘shell index.’’ The equations of motio
read

dun

dt
5 i ~akn11un12un111bknun11un21

1ckn21un21un22!* 2nkn
2un1 f n , ~1!

where the asterisk stands for complex conjugation. The w
numberskn are chosen as a geometric progression

kn5k0ln, ~2!

with l being the ‘‘shell spacing’’ parameter.f n is a forcing
term that is restricted to the first shells. The parametern is
the ‘‘viscosity.’’ In the limit of zero viscosity, one can ar
range the model to have two quadratic invariants. Requir
that the energy
1811 © 1998 The American Physical Society
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1812 PRE 58VICTOR S. L’VOV et al.
E5(
n

uunu2 ~3!

will be conserved leads to the following relation between
coefficientsa, b, andc:

a1b1c50. ~4!

A second quadratic quantity that is conserved is then

H5(
n

~a/c!nuunu2. ~5!

Although nonpositive, this second invariant is often as
ciated with ‘‘helicity.’’

The main attraction of this model is that it displays mu
tiscaling in the sense that moments of the velocity depend
kn as power laws with nontrivial exponents:

^uunuq&}kn
2zq , ~6!

where the scaling exponentszq exhibit nonlinear dependenc
on q. We expect such scaling laws to appear in the ‘‘inert
range’’ with shell indexn much larger than the largest she
index that is effected by the forcing, denoted asnL , and
much smaller than the shell indices affected by the viscos
the smallest of which will be denoted asnd .

We will refer to the moments as ‘‘structure functions
For evenq52m we use the usual definition:

S2m~kn!5^uunu2m&, ~7!

while for odd q52m11 we suggest the following defini
tion:

S2m11~kn!5Im^un21unun11uunu2~m21!& ~GOY!. ~8!

The definition of the odd structure function differs from th
usual definitionS2m11(kn)5^uunu2m11&. Our choice, Eq.~8!,
is motivated by our reluctance to use the nonanalytic fu
tion uunu. We will see that our definition yieldsz351 as an
exact result, similar to Kolmogorov’s exact result forz3 in
three-dimensional fluid turbulence. It was shown by nume
cal simulations that the choice of parametersl52 and
(a,b,c)5(1,20.5,20.5) leads to scaling exponentszq that
are numerically close to those measured in experimental
drodynamic turbulence.

B. Additional properties

The GOY model shares with Navier-Stokes turbulence
analog of the 4/5 law. Assuming stationarity and using
quadratic invariants introduced above, we can obtain
identities involving third-order correlations. Multiplying Eq
~1! by un* we have, neglecting viscosity,

d

dt
S2~kn!52k0lnS alS3~kn11!1bS3~kn!1

c

l
S3~kn21! D

1pn , ~9!

where
e

-

n

l

y,

-

i-

y-

n
e
o

pn52 Rê un* f n&, ~10!

and obviouslypn50 for n.nL . In stationary conditions the
rate of change ofS2(kn) vanishes, and we find

alS3~kn11!1bS3~kn!1
c

l
S3~kn21!50. ~11!

This equation has a solution in the inertial interval:

S3~kn!5
1

kn
FA1BS c

aD nG . ~12!

The unknown coefficientsA and B can be found by its
matching with the ‘‘boundary conditions’’ at smallkn . To
do so we can follow the considerations of Pissarenkoet al.
@4# and sum up Eq.~9! on all the shells fromn50 to an
arbitrary shellM , whereM is in the inertial interval. Using
the conservation laws~i.e., a1b1c50) we derive

05
d

dt(n50

M

S2~kn!

52kM@alS3~kM11!1~b1a!S3~kM !#1 ē, ~13!

05
d

dt(n50

M

S2~kn!S a

cD n

52kMS a

cD M

@alS3~kM11!1~b1c!S3~kM !#1 d̄,

~14!

where the rate of dissipationē and the spurious meand̄ are
defined as

ē5 (
n50

nL

pn , d̄5 (
n50

nL

pnS a

cD n

. ~15!

Substituting the solution~12! into Eqs. ~13! and ~14!, one
relates the values ofA andB to those of the fluxesē and d̄.
Now Eq. ~12! becomes

S3~kn!5
1

2kn~a2c!F2 ē1 d̄S c

aD nG . ~16!

There are four different types of functional dependence
S3(kn) on kn , determined by the ratioc/a, as illustrated at
Fig. 1. Forc/a,0, this function has period-two oscillation
that are caused by the existence of a nonzero flux of
second integral of motion, which is not positively defined
this region. Forc/a.0, the second integral is positively de
fined and the function is monotonic. Foruc/au,1, the role of
the second flux becomes irrelevant in the limitn→`. Con-
sequently the deviation ofS3(kn) from the scale invariant
behaviorS3(kn)}1/kn decreases asn increases, see pane
~a! and~b! of Fig. 1. In contrast, in the caseuc/au.1 the role
of the energy flux becomes irrelevant in the limit ofn→`.
In this case the properties of the model are completely de
mined by the flux of the second integral, see panels~c! and
~d! of Fig. 1. In the sequel we will focus on the regio
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PRE 58 1813IMPROVED SHELL MODEL OF TURBULENCE
uc/au,1. The reason for this is that Navier-Stokes turb
lence never exhibits a region in which the energy integra
irrelevant.

As we discussed, even in the ‘‘physical’’ region in whic
uc/au,1, the subleading contributions~which are affected
by the second integral! may influence the apparent scalin
behavior of the leading scale invariant contributions, wh
are determined by the energy integral. In the region21
,c/a,0, which is commonly discussed in literature, su
leading contributions lead to period-two oscillations that d
crease upon the increase ofn. These introduce additiona
problems in determining the scaling exponents. A sim
way to eliminate this complication is to consider a ‘‘helicit
free’’ forcing chosen such that the flux of the second integ
~‘‘helicity’’ ! would vanish identically. This is easilly
achieved by selecting the forcing of the two first shells. Fr
Eq. ~15! we deduce

d̄50 at cp01ap150, p25p35•••50. ~17!

For a random force that is Gaussian andd-correlated in time,

^ f n~ t ! f m~ t8!&5sn
2Dnmd~ t2t8!, ~18!

one gets

pn5sn
2 . ~19!

For this type of forcing the condition of zero ‘‘helicity’’ flux
~17! is achieved by choosing the forcing to have the me
square amplitudes

cs0
21as1

250. ~20!

Under this condition the period-two oscillations disappea
The GOY model has some properties that make it un

sirable for further analytic studies. It is best to exhibit the
in comparison with the new~and we believe superior! model.

FIG. 1. Plots of the quantitieszn52knS3(kn) with S3(kn) taken

as the stationary solutions~16!. The fluxesē and d̄ are related by

ē5cd̄/a anda51. The four panels have different values ofc. ~a!
c50.5, ~b! c520.5, ~c! c52, ~d! c522.
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III. OUR MODEL: DEFINITION AND MAIN FEATURES

A. Our model

We propose the following equation of motion for ou
model:

dun

dt
5 i ~akn11un12un11* 1bknun11un21* 2ckn21un21un22!

2nkn
2un1 f n , ~21!

where for simplicity we assume that the coefficientsa, b,
andc are real. As in the GOY model, conservation of ener
in the inviscid limit is obtained ifa1b1c50.

The fundamental difference with the GOY model lies
the number of complex conjugation operators used in
nonlinear terms. We show in the following that this slig
change is responsible for a difference in the phase sym
tries of the two models. As a consequence, our model
exhibit shorter-ranged correlations than the GOY mod
Apart from this difference, all the calculations described
the preceding section remain valid. Both models share
same quadratic invariants and one can derive for the
model another analog of the 4/5 law. We need to replace
definition of the odd order correlators~8! according to

S3~kn!5Im^un21unun11* &,

S2m11~kn!5Im^un21unuunu2~m21!un11* & ~Ours!.
~22!

Note that the shell indexn is related to the intermediate she
involved in the correlation function.

B. Phase symmetry and correlations

Let us examine the phase transformation:

un→unexp~ iun!. ~23!

The equations of motion of both the GOY and our mod
remain invariant under such transformations, provided t
the phasesun are related by

un211un1un1150 ~GOY!,

un211un2un1150 ~Ours!. ~24!

The phasesun can then be obtained iteratively fromu1 and
u2, namely

u113p5u1 , u3p125u2 , u3p52u12u2 ~GOY!;
~25!

un5
1

A5
@u1~a1

n222a2
n22!1u2~a1

n212a2
n21!#,

a65
1

2
~16A5! ~Ours!. ~26!

Although Eq.~26! has irrational numbers, it is easy to che
that

un5r nu11snu2 , ~27!
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1814 PRE 58VICTOR S. L’VOV et al.
wherer n andsn are integer numbers that grow exponentia
with n.

Note that phasesu1 andu2 satisfy the equations of motio

du1

dt
50,

du2

dt
50, ~28!

and they can be randomized by any small external forcing
means that any correlation functions that contain the pha
u1, u2 or both phases must be zero. In our direct numer
simulations, see below, we confirmed that this is indeed
case. In the our model there is only one nonzero seco
order structure function. All nondiagonal correlation fun
tions vanish in our model,

S2~kn ,km!5^unum* &50 nÞm ~Ours!. ~29!

This is not the case for the GOY model, for which there a
correlations between shells separated by multiples of thr

S2~kn ,kn13p!Þ0 ~GOY!. ~30!

The relative simplicity of our model is seen also with rega
to higher-order structure functions. Our model has only o
nonzero third-order structure functionS3(kn) that couples
three consecutive shells as defined by Eq.~22!. All other
third-order structure functions vanish by averaging over
random phasesu1 and u2. In contrast, in the GOY mode
there exists an infinite double set of nonvanishing correla
functions of third order with givenn. These are

^unun13pun1113q&Þ0 ~GOY!. ~31!

The same phenomenon occurs also for higher-order cor
tion functions. In the our model the number of nonzero c
relation functions with finiten is much smaller than the cor
responding functions in the GOY model, making it mo
convenient for theoretical analysis.

To conclude this section, we formulate a ‘‘conservati
law’’ that determines which correlation functions of o
model are nonzero. Introduce a quasimomentumkn for n
shell by

kn[an, ~32!

wherea is the golden mean,a25a11. One can check tha
in our model the only nonzero correlation functions sati
the following conservation law:the sum of incoming quasi
momenta (associated with u) is equal to the sum of outgoin
quasimomenta (associated with u* ).

C. Additional properties

In this subsection we show that our model exhibits
properties of the GOY model that were revealed in Sec. II

With this aim we compute from Eq.~21! the time deriva-
tive of S2(kn ,t):
It
es
l
e
d-

e
:

s
e

e

n

la-
-

e
.

dS2~kn!

dt
52 ReK dun~ t !

dt
un* ~ t !L

522 Im @akn^un* un11* un12&1bkn^un21* un* un11&

2ckn21^un22un21un* &#22nkn
2^unun* &1pn ,

~33!

where the forcing contributionpn was defined in Eq.~10!.
With the definition~22! of S3(kn), this translates to the

balance equation~9! derived for the GOY model. Note tha
these two models differ in the definitions ofS3(kn): Eq. ~8!
for the GOY model and Eq.~22! for our model. Clearly,
S3(kn) in our model has the same form~16! as in the GOY
model and all the features of the GOY model discussed
Sec. II B are relevant for our model as well. In particula
one may eliminate the period-two oscillations by a prop
choice~17! or ~20! of the forcing.

The reader should note, however, that in the case of
GOY model the second- and the third-order structure fu
tions have additional long-range correlations that do not
pear in the balance equation. This is a flaw of the GO
model that is eliminated in the context of our model, whe
what you see is what exists. Note also that the long-ra
correlations for the GOY model exist between shells se
rated by multiples of three@see, for example, Eqs.~30! and
~31!#. These correlations are responsible for period-three
cillations in scaling plots of the GOY model. These annoyi
oscillations are absent in our model by construction. Th
after elimination of the period-two oscillations~using
‘‘helicity-free’’ forcing ! one finds scale invariant behavior o
the structure functions almost from the very begining of t
inertial interval.

IV. ASPECTS OF THE NUMERICAL INTEGRATION:
STIFFNESS, FORCING, AND DISSIPATION

The numerical investigation of our model, as of any oth
stiff set of differential equations, calls for some care. W
therefore dedicate this section to a discussion of the iss
involved. A reader who wishes to consider the results o
can skip this section and read the next one.

A. Stiffness

The main difficulty in integrating a shell model stem
obviously from the stiffness of the system, i.e., we are c
cerned with a wide range of time scales in the syste
Within the inertial range, the equation is dominated by t
nonlinear terms so that the natural time scale~in the Kol-
mogorov approximation! of the nth shell scales as

tn;
1

knun
}

1

kn
2/3

. ~34!

Within the viscous range, however, the dominant term is
viscous one and if thenth shell lies in this subrange, it
natural time becomes

tn;
1

nkn
2

. ~35!

We can now estimate the global stiffness of the system
quoting the ratio of the extremal time scales:
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t1

tN
;

t1

tnd

tnd

tN
;S kd

k1
D 2/3S kN

kd
D 2

;l2[N12~N2nd!21]/3. ~36!

The global stiffness of the system thus depends both on
total number of shellsN and on the width of the viscou
region. Most of the results published in the literature a
obtained with 22 shells, a forcing restricted to the first sh
and a viscous boundary beginning about the 18th shell
this typical case, we havet1 /tN;6.63105. In this paper we
typically use N534 with about six shells in the viscou
range. For this choicet1 /tN;109.

To deal with this stiffness we chose from the libra
SLATEC @7# the backward differentiation routine DDEBD
@8#. This routine is specially dedicated to very stiff problem
Although rather fast, its precision is not exceptional and i
rather sensitive to functions that are not sufficiently smoo
In cases of failure of the backward differentiation routine, t
code switches automatically to a 4/5th order Runge-Ku
algorithm. Both routines adapt their step size to fulfill a p
scribed precision requirement. The backward differentiat
routine adapts in addition its order between 1 to 5.

B. Random forcing

We generate the random forcing to guarantee zero m
value of the velocity. We use a time correlated noise, wit
correlation time chosen to be the natural time scale at
forcing shell:t51/(knL

unL
). Denoting the forcing termf , in

case of an exponential correlation, the evolution off is ruled
by the equation

d

dt
f 52

f

t
1h, ~37!

whereh is an uncorrelated noise. The presence of this n
equation in the system could in principle make the integ
tion more cumbersome. Fortunately, the system being s
the typical time step used in the integration is very sm
compared with the forcing time scalet ~six orders of mag-
nitude in a typical calculation with 22 shells!. This allows us
to integrate f separately with a first-order scheme. In t
code, the forcing is updated at each new call of the integ
tor. The Gaussian exponentially correlated random forcin
computed~after proper initialization! according to a first-
order scheme proposed by Foxet al. @9#:

f ~ t1dt!5 f ~ t !E1sA22~12E2!log10~a!exp~ i2pb!,
~38!

whereE5exp(2dt/t), s is the standard deviation off , and
a andb two random numbers between 0 and 1.

C. Dimensional analysis

For the purpose of our numerical fits we consider, follo
ing @10#, the dissipative boundarynd , where the dissipative
term balances the nonlinear term. At this boundarykdund

2 is

of the order ofnkd
2und

. In the viscous rangen.nd one can
guess a generalized exponential form:
he

e
ll
In

.
s
.

e
a
-
n

an
a
e

w
-

ff,
ll

a-
is

-

un;knexpF2S kn

kd
D xG , ~39!

where@10#

x5 logl

11A5

2
. ~40!

We have studied the influence of the width of the visco
range on this exponential behavior. The results obtained f
system of 22 shells with various viscosities are summari
in Fig. 2, where we can see that the scaling behavior in
viscous range approaches slowly the asymptotic predict
In the case of the largest viscosity used,n5831024, we
note that the asymptotic behavior starts atn.15 while nd
.9. We can then consider that this width of six shells is t
minimal one needed to properly describe the viscous ran

In the inertial interval dimensional reasoning leads to K
scaling: un;( ē/kn)1/3. This formula may be matched with
Eq. ~39!:

un;unL
S knL

kn
D 1/3F11S kn

kd
D 4/3GexpF2S kn

kd
D xG , ~41!

whereunL
;Af /knL

andkd;( f 3/n6knL
)1/8. We will see that

although the actual values of the exponents change du
multiscaling, the form of the solution is rather close to re
ity, and Eq.~41! is a good starting point for numerical fits

V. NUMERICAL SIMULATIONS: RESULTS

A careful determination of the scaling exponents is a d
cate issue. With an infinite inertial range, we expect p
scaling laws. Despite its large size, the inertial range that
have in shell models remains finite. The most widely us
method to determine the exponent is based on a linear
gression or on the determination of a local slope@11# in
log-log scale. In these methods one needs a criterion
choose the fitting range. The uncertainty in the scaling ex

FIG. 2. Modulus ofun in our model obtained by integration ove
500 turnover time scales with values of the viscosities as show
the figure. The dashed line represents the expected asymptoti
havior in the deep viscous regime. The slope of this line is given
Eq. ~39!.
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nents comes obviously from the quality of the regression
also largely from the number of shells taken into consid
ation. We want to make the point here that these methods
not reliable, giving rise to a lot of confusion in the literatur
One needs to fit a whole function to the inertial and dissi
tive ranges simultaneously to achieve reliable estimate
the exponents in the inertial range.

The definition of the scaling exponents can be a matte
choice of the statistical object. Our preferred definition
Eqs. ~7! and ~22! for even and odd exponents, respective
Two alternative choices were widely used in the literatu
respectively based on the modulus of the velocity and on
energy flux:

S̃q~kn!5^uunuq&, ~42!

Ŝq~kn!5^uSnuq/3&

5^uIm@al unun11un12* 2cun21unun11* #uq/3&.

~43!

The latter definition allowed for a higher numerical precisi
in the context of the GOY model because the energy flu
not affected either by the genuine dynamical oscillation~due
to the helicity flux! or by the period-three oscillations. Be
yond these different definitions of the statistical objects,
can also modify the definition of the scaling exponents the
selves. In the framework of so-called ‘‘extended se
similarity’’ ~ESS!, instead of writingSq(kn)5Akn

2zq one as-
sumes a scaling relation between the structure function
orderq and of order 3:Sq(kn)5A@S3(kn)# z̃q.

These different definitions givea priori different sets of
scaling exponents. An efficient comparison, however, is
ficult to set up in the case of the GOY model because of
various oscillations polluting the data. Moreover, none of
techniques described so far took explicitly into account
finite size effects. The fitting procedure that we describe n
is an attempt to do so, and one of the results is that
exponents are universal, independent~for given parameters!
of the choice of the statistical object.

In light of the interpolation formula~41!, and encouraged
by the fact that the dissipative, stretched exponential beh
ior is rather nicely obeyed, we fit all our spectra to the f
lowing fit formula:

Fq~kn!5
Ap

kn
zq
S 11aq

kn

kd,q
D mq

expF2S kn

kd,q
D xG . ~44!

This guarantees the right behavior at both asymptotics. N
that we do not make any hypothesis on the form of the tr
sition between the power law and the dissipative regimes
fitting we minimize the following error function:

E5A(
n

S 12
log10Fq~kn!

log10Sq~kn! D
2

. ~45!

HereSq refers to the numerically obtained structure functio
We use the same fit formula for all three definitions of s
tistical objects. The sum in Eq.~45! was computed over the
whole range except the two first shells and the two last sh
t
-
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.
,
e

is

e
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-
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e
e
e
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e
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in order to limit the effect of the boundaries. It turns out th
the minimum found in this procedure is sharp~as a function
of zq) provided that we have a good fit of theSq over its
whole range. To estimate the relative error in the scal
exponentszq we arbitrarily computed the values ofzq that
agree with values ofE that are twice the minimum value
These are the errors reported in all the tables below.

In all our simulations we used the parameter valuesa
51, b5c520.5, ands1 /s050.7. This choice eliminates
the flux of helicity and correspondingly the period-two osc
lations in the scaling plots. Typical fits for the structure fun
tions from S2 to S5 for simulations with 34 shells (n54
310211, s05531023) are shown in Fig. 3.

In Table I we present the computed scaling expone
associated with three different definitions ofq-order correla-
tion functions. These results offer a very strong indicati
that the three scaling exponents ofq-order correlation func-
tions ~with given q) are all the same.

On the other hand, we can make the point that ESS@12# in
its standard usage does not seem be a useful approach i
present context for computing more accurate scaling ex
nents. In Fig. 4 we presentS2(kn) both as a function ofkn
and as a function ofS3(kn). Even though superficially the
ESS way of plotting seems to yield a longer linear plot
careful examination shows a break in the inertial range s

FIG. 3. Log-log plot of the structure functionsS2(kn) to S5(kn)
vs kn and of the results obtained using the fitting formula~44!. The
structure functions are represented by the symbols and the fit
the lines.

TABLE I. Summary of the scaling exponents computed with
model of 34 shells.

q Sq ^uunuq& ^uSnuq/3&

1 0.39360.006 0.39360.007
2 0.72060.008 0.72060.008 0.71960.007
3 1.00060.005 1.00360.009 1.00060.005
4 1.25660.012 1.25660.012 1.24960.003
5 1.47960.006 1.48860.013 1.47760.004
6 1.70660.015 1.70660.015 1.69160.006
7 1.90160.010 1.91060.020 1.89360.010
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ing that occurs precisely at the crossover to dissipative
havior. We gain nothing from ESS for this model.

Nevertheless, for the limited aim of computing a prec
value ofz2, we can make use of the ESS idea provided t
we fit the whole range. To do this, we have to impose ad
tional information on the fitting function. For the case ofz2
we can employ the information contained in the balan
equation~9!, closing it with the ansatz

S2~kn!5A2uS3~kn!uz2. ~46!

Using Eq.~46! and introducingzn52knS3(kn), we can re-
write Eq. ~9! as

zn115zn211b~zn212zn!2~kn /k* !22z2uznuz2, ~47!

wherek* 5(nA2)1/(z222) anda51.
Givenz0 andz1, one can iteratively calculatezn and, con-

sequently,S3(kn) andS2(kn) in the range ofkn , for which
the ESS ansatz is valid with reasonable accuracy. Assum
for simplicity z05z1, the values ofzn are defined by three
free parameters:z0 ,A2 ,z2.

As an example, we applied this procedure to the num
cal data calculated witha51, b520.5, and n54
310211. The values of fitting parameters corresponding
the global minimum of the functionalE ~45! are z0
50.001 26, A251.80, andz250.728. To estimate the accu
racy of the chosen fit parameters, we have studied the de
dence ofE on the deviationdz2 , dA2, anddz0 from their
optimal values with two other parameters fixed at the optim
values. As before, we define the error bar for each param
interval for whichE takes on values that are twice the val
at the minimum. With this definition z050.001 26
60.000 02, A251.8060.06, andz250.72860.002.

The accuracy reached here is higher than in the pro
dures described above. Most of the errors in the fit app
from the crossover region from power law to exponen
decay. The analytically calculatedS2(kn) and S3(kn) near
the onset of the viscous range are very sensitive to the v

FIG. 4. Log-log plot ofS2(kn) vs kn and vsS3(kn), respec-
tively. This plot shows that at least for this model, and when
accuracy is sufficiently high, ESS is quite useless in increasing
effective range of power-law behavior.
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of z2. Therefore, employing an adequate fit in this regi
~which uses additionala priori information contained in the
balance equation! allows one to be more accurate. Note th
we do not have such simple balance equations for high
order correlation functions and therefore a generalization
the procedure for higher orders is not available.

VI. TESTS OF THE STATISTICAL QUALITY
OF THE NUMERICAL DATA

In evaluating the scaling exponentszq one has to make
sure that the structure functionsSq(kn) are calculated prop-
erly. This means that~i! the averaging time is sufficient fo
the representative statistics, and~ii ! the numerical procedure
produces an accurate realizationun(t).

A. The PDF test for the averaging time

In intermittent statistics one may need to wait a rath
long time before the appearance of rare events that neve
less contribute significantly to the statistics ofq-order struc-
ture functions ofn shells. This issue was carefully discuss
by Leveque and She@13# in numerical simulations of the
GOY model. They considered the waiting timeTn,q, which
is needed to evaluate safelyq-order correlations ofn shells.
They argued that times of the order of 53109 turnover times
of the n shell are required forq'15.

In the beginning of this subsection we estimate anal
cally the waiting timeTn,q , which is needed to observe, sa
100 events contributing toS2q(kn). This is done using the
probabilityWn,q to observe one rare event in which the val
of the velocityun hits the range that contributes mostly to th
statistics ofS2q(kn). Denoting bytn the decorrelation time
on thenth shell we estimate

Tn,q;100tn /Wn,q . ~48!

The probabilityWn,q may be related to the PDF of the ve
locity at thenth shell, Pn(u). For the sake of this estimat
we takePn(u) as a stretched exponential. We do not imp
that this distribution function is realized in this model~in fact
we know that it is not consistent with multiscaling!. We use
it only for the sake of an order of magnitude analytical es
mate of the waiting time. Consider

Pn~v !5C exp@2uvud#, ~49!

wherev is dimensionless velocityv5u/u0 , u0 is a char-
acteristic velocity,u0

2.S2(kn), and C is a normalization
constant. One computesS2q(kn) as

S2q~kn!5u0
2qE

2`

`

v2qPn~v !dv. ~50!

The integrand in Eq.~50! has a maximum atv5vq , where

vq5~2q/d!1/d. ~51!

From Eq. ~49! we can estimate the probability thatv will
attain a value within an interval of order ofAq;1 around
vq , which was denoted asWn,q . This interval ofv values
contributes maximally toS2q . Namely,

e
e



ea

te
te
e

he
e
v

ly

-
th
o

se.

-

f

g.

be
ell

ub-

-

s

l
r-

e-

be
hy-
ur
of

of

lts
re-
of

1818 PRE 58VICTOR S. L’VOV et al.
Wn,q;Pn~vq!5C exp@22q/d#. ~52!

Equation~52! leads to the estimate

Tn,q;100tnexp~2q/d!, ~53!

wheretn is a characteristic decorrelation time forn’s shell.
The timeTn,q is exponentially large. For instance, ford51
and 2q510, the averaging time required for accurate m
surement ofS10(kn) is of the order of

Tn,q.100e10tn.23106tn . ~54!

Admittedly this evaluation is rather rough. More accura
evaluations should be based on the numerically compu
probability distribution functions as done for the GOY mod
in @13#. We plot the numerical value of (u/u0)2qP(u2/u0

2)
versus (u/u0)2 and see how noisy is the region that gives t
main contribution toS2q . Such plots for the third shell ar
presented at Fig. 5 for two realizations, one averaged o
625 and the other over 6250 turnover times of this shell,t3.
In panels~a!, ~b!, and~c! we show the integrands forS2 , S4,
andS6. One sees thatS2 andS4 can be evaluated reasonab
well even from the shorter run, whileS6 can be computed
only from the longer run. Panels~d!, ~e!, and~f! present the
analysis forS8 , S10, andS12 correspondingly. The evalua
tion of S8 is questionable even when the long run is used;
results forS10, S12, etc. are meaningless even for the run

FIG. 5. Plots of (u/u0)qP3„(u/u0)2
… for the third shell with

different values ofq as shown in the figures. In every figure resu
are presented for 6250~solid line! and 625~dashed line! turnover
timest3. AlreadyS8 is not accurate even with the longer run.
-

d
l

er

e
f

6250 turnover times. This run is too short for this purpo
The same analysis for shell no. 7~in the bulk of the inertial
interval!, with two runs of 4000t7, shows that the improve
ment of the long run is not sufficient~see Fig. 6!. We can
hardly computeS8 from the longer run. In the viscous end o
the inertial interval~say for shell no. 12! our run was ten
times longer (43105t12) and the results can be seen in Fi
7. Now S8 can be computed reasonably well, butS10 is still
buried in noise. Higher-order structure functions cannot
estimated at all. Lastly, in Fig. 8 we present results for sh
no. 16, which belongs to the beginning of the viscous s
range. Here we have an even longer run of 2.53106t16,
resulting in a marginal improvement in the ability to com
puteS10.

For the evaluation of the scaling exponentzq one needs to
computeSq(kn) throughout the inertial interval. It appear
that we can determine scaling exponents up toz6 from runs
whose duration is about 5000~longest! turnover times. In
order to find exponents up toz8 we need runs of minima
duration of 105 ~longest! turnover times. An accurate dete
mination of the exponentz10 calls for runs of about one
million turnover times. Note that this estimate is in agre
ment with the simple analytical formula~54! presented
above. Note also that these conclusions may very well
applicable also for the analysis of experimental data of
drodynamic turbulence. The scaling exponents with o
choice of parameters in our model correspond to those
Navier-Stokes turbulence, and it is likely that the far end

FIG. 6. Same as Fig. 5 but for shell no. 7. The solid line rep
sents a longer run of 43104t7, and the dashed line a shorter run
4000t7.
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PRE 58 1819IMPROVED SHELL MODEL OF TURBULENCE
the probability distribution functions is as hard to reprodu
in experiments as in our simulations. Since very long ru
are rarely available in experimental data, this should serv
a warning that stated numerical values of higher scaling
ponents should be taken with great caution.

B. Test of the numerical procedure

The averaging time is not the only factor affecting t
quality of the numerical data. Since the time dependenc
un(t) is highly intermittent, we need to test carefully th
ability of the numerics to cope with this. We need to che
that the statistical characteristics of the processun(t) obey
the exact relations imposed on the correlation functions
simple test can be built around the first equation of the i
nite hierarchy relatingSq(kn) and Sq11(kn). Consider Eq.
~9! relating S2 and S3. In the inertial range, where the vis
cous term may be neglected, the largest term on the left-h
side~proportional toc) is balanced by the two first terms o
the left-hand side. In the viscous range, whereS3(kn) drops
to zero very quickly, this term is balanced by the visco
term on the right-hand side. It is thus useful to rewrite E
~9! in the form of a ‘‘balance coefficient’’@keeping in mind
that S3(kn) is negative andS2(kn) is positive#:

FIG. 7. Same as Fig. 5 but for shell no. 12. The solid li
represents a longer run of 43105t12, and the dashed line a shorte
run of 43104t12.
e
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C~kn!5
auS3~kn11!ukn111buS3~kn!ukn2nkn

2S2~kn!

cuS3~kn21!ukn21
.

~55!

If the numerical data satisfy the balance equation~9! accu-
rately, the coefficientsC(kn) have to be unity for alln. In
Fig. 9 we show that in our simulations this relation betwe
S3(kn) andS2(kn) is obeyed with accuracy better than 0.1%
However, this does not mean that less frequent events
contribute to higher-order correlation functions are also c
rectly reproduced. To check the statistical reliability
S4(kn) one can use the second equation from the hierarc
which connectsS4(kn) and S5(kn) and so on. To measur
this accuracy one can define, analogously toC(kn), a gener-
alized balance coefficientCn

(2q) . To define it we consider the
time derivative ofS2q(kn):

dS2q~kn!

dt
522q Im @akn11^un* un11* un12uunu2~q21!&

1bkn^un21* un* un11uunu2~q21!&

2ckn21^un22un21un* uunu2~q21!&#

22qnkn
2^uunu2q&. ~56!

In the stationary case this gives

FIG. 8. Same as Fig. 5 but for shell no. 16. The solid li
represents a longer run of 2.53106t16, and the dashed line a
shorter run of 2.53105t16.
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1820 PRE 58VICTOR S. L’VOV et al.
aS2q11
2 ~kn11!kn111bS2q11~kn!kn1cS2q11

1 ~kn21!kn21

5nkn
2S2q~kn!. ~57!

Here S2q11 is defined by Eq.~22! and we have introduced
two additional structure functions:

S2q11
6 ~kn!5Im^un21unun11* uun61u2~q21!&. ~58!

One can rewrite Eq.~57!, similarly to Eq.~55!, in the form of
a balance coefficient:

Cn
~2q!5

aS2q11
2 ~kn11!kn111bS2q11~kn!kn1nkn

2S2q~kn!

cuS2q11
1 ~kn21!ukn21

.

~59!

Again, if the numerical data reproduce the balance equa
~57!, the coefficientCn

(2q) has to be unity for alln. Testing
this fact should be an integral part of the numerical solut
of this model and similar models in the future.

VII. UNIVERSALITY WITH RESPECT
TO HYPERVISCOSITY

‘‘Hyperviscosity’’ in shell models amounts to changin
the viscous term in Eq.~21! with a termnkn

2m with m.1.
The effect of hyperviscosity on shell models is a matter
controversy. It was originally argued by She and Leveq
@11# that in the GOY model there was no universality of t
scaling exponents, the value of the latter being strongly
pendent on the dissipation mechanism. The same observ
has been made by Ditlevsen@14#. If true, this observation
would cast a doubt either on the relevance of shell model
turbulence studies or on one of the most widely accep
hypotheses in fluid turbulence: the universality of the ex
nents in the scaling range. Note, for example, that m
direct simulations of 3D turbulence use hyperviscosity.
the other hand, Benziet al.have showed@15# that in the case

FIG. 9. Balance coefficientC(kn) for 22 shells,b520.5, aver-
age over 2500 largest turnover times.
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of shell models with eddy viscosity, the inertial exponen
were independent of the particular definition used for
eddy viscosity. Recently we made the point@16# that within
the GOY model this phenomenon is nothing but a finite s
effect that disappears when one increases the size of th
ertial range. We dedicate this section to showing that
same is true for the our model.

Before discussing the results, we need to test our sim
tions for accuracy of the evaluation of the structure fun
tions. To this aim we present in Fig. 10 the balance coe
cient Cn

(2) ~cf. Sec. VI B! for m51,2,3. We tested the
accuracy in a relatively short run of 250 forcing turnov
time scales. The results indicate that even for this short
the accuracy of determination of the two lowest-order str
ture functions is about 0.1% in the inertial range, but on
about 1% in the dissipative range. Note that hypervisco
makes the determination of the structure functions in
viscous range~starting with the crossover region! somewhat
less accurate. In order to reduce the source of uncertainty
without loss of generality, we measured the exponents fr
the flux-based structure functions~43!.

In the following, we focus on the second- and third-ord
structure functions, using runs of duration 1500 forcing tu
over time scales, and offer a careful calculation of their a
parent scaling exponents as a function of the number
shells used in the simulations, and of the order of the hyp
viscosity termm. We will show that the hyperviscous cor
rection affects a finite number of shells in the vicinity of th
viscous transition. This number is relatively large, about
shells or three decades of ‘‘length scales.’’ The reason
this large effect is that we have a discrete model in wh
each shell interacts with four nearest neighbors. This me
that with the standard shell spacing parameterl52, the lo-
cal interactions spread over more than one decade of le
scales. Nevertheless, we show now that this number rem
unchanged when we increase the size of the inertial ran
indicating a mere finite size effect.

To see this point examine Figs. 11 and 12, in which
superpose results forknS3(kn) with m52 andm53, respec-

FIG. 10. CoefficientsC(kn) @see Eq.~55!# obtained for a model
of 34 shells integrated over 250 forcing turnover time scales w
dissipative terms proportional tokn

2 , kn
4 , andkn

6 , respectively.
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PRE 58 1821IMPROVED SHELL MODEL OF TURBULENCE
tively, which were obtained in eight different simulations
detailed in the figures. The plots are as a function of log2(kn)
with an appropriate shift in the abscissa. We see that in
cases the region of deviation from a constant function, as
ciated with the theoretical expectation Eq.~6!, is of constant
magnitude and of constant extent, independent ofn or the
total number of shells. This is a clear indication that wh
the number of shells increases to infinity, the scaling ex
nentz351 will be observed in a universal manner.

Another way to reach the same conclusion is obtained
fitting structure functions as explained in Sec. VI to the fo
mula ~44!. We ran simulations form51, 2, and 3 withN
522, 28, and 34. The exponentx of the viscous tail form
52,3 exhibits significant departures from its dimensional

FIG. 11. Log-log plots ofknS3(kn) vs kn in case of hypervis-
cosity of indexm52 with different numbers of shells and viscos
ties. The collapse has been obtained by shifting the abscissa.
solid line shows the constant behavior expected theoretically.
observes clearly that the departure from this constant value
occurs in a region of about ten shells near to the viscous transi
When the inertial range is large enough, the predicted behavio
recovered.

FIG. 12. Same as Fig. 11 in the case of hyperviscosity of in
m53. Note that the amplitude of the bump is larger than in
previous case.
ll
o-

n
-
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pectation~40!. We obtainedx.0.75 for m52 andx.0.90
for m53, while x.0.69 for m51. These values, which
seem to be independent of the order of the structure funct
have then been used in the fitting procedure. The results
z2 and z3 with normal viscosity were quite independent
N. On the contrary, hyperviscosity caused an appar
change in scaling exponents. However, as can be see
Figs. 13 and 14, these values can be plotted as a functio
1/@ log2(kd /k1)#2 and they converge, forkd→` to the values
obtained form51. Note that log2(kd /k1) is precisely the
length of the inertial interval, andkd was obtained from the
fit.

VIII. SUMMARY

We presented a shell model of turbulence, and dem
strated its improved properties in terms of simpler, short

he
e
ly
n.
is

x

FIG. 13. Apparent scaling exponentz3 as a function of the
square of the inverse extent of the inertial interval, form51
~circles!, m52 ~squares!, andm53 ~diamonds!. The tendency to-
wardsz351 is evident.

FIG. 14. Apparent scaling exponentz2 as a function of the
square of the inverse extent of the inertial interval, form51
~circles!, m52 ~squares!, andm53 ~diamonds!. The tendency to-
wardsz2 as found for normal viscositym51 is evident.
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1822 PRE 58VICTOR S. L’VOV et al.
range correlations. The model exhibits anomalous sca
similar to the GOY model and to Navier-Stokes turbulen
In the future we will argue that the improved properties
this model help considerably in seeking analytic methods
the calculations of the scaling exponents. We used the
portunity of the introduction of this model to examine car
fully issues such as the accuracy of determination of sca
exponents and the minimal length of running time requi
to achieve accurate structure functions. These considera
are model independent and pertinent to other example
multiscaling as well. Lastly, we demonstrated the univers
ity of the scaling exponents with respect to the type of v
M.

J.

s

g
.
f
r
p-
-
g
d
ns
of
l-
-

cous damping. This universality was questioned in the rec
literature but we showed here for our model and previou
@16# for the GOY model that there is no reason to doubt

ACKNOWLEDGMENTS

This work was supported in part by the U.S.–Israel B
National Science Foundation, The Basic Research Fund
ministered by the Israel Academy of Science and Huma
ties, The European Union under Contract No. FMRX-CT-9
0010, and the Naftali and Anna Backenroth-Bronicki Fu
for Research in Chaos and Complexity.
. A

li,

v.
@1# E. B. Gledzer, Dokl. Akad. Nauk SSSR200, 1043~1973!.
@2# M. Yamada and K. Ohkitani, J. Phys. Soc. Jpn.56, 4210

~1987!.
@3# M. H. Jensen, G. Paladin, and A. Vulpiani, Phys. Rev. A43,

798 ~1991!.
@4# D. Pissarenko, L. Biferale, D. Courvoisier, U. Frisch, and

Vergassola, Phys. Fluids A5, 2533~1993!.
@5# R. Benzi, L. Biferale, and G. Parisi, Physica D65, 163~1993!.
@6# V. I. Belinicher, V. S. L’vov, A. Pomyalov, and I. Procaccia,

Stat. Phys.~to be published!.
@7# SLATEC library ~Sandia, Los Alamos, Air Force Weapon

Laboratory Technical Exchange Committee!, available on
http://www.netlib.org/slatec
@8# L. F. Shampine and H. A. Watts, SAND-79-2374, DEPAC.
@9# R. F. Fox, I. R. Gatland, R. Roy, and G. Vemuri, Phys. Rev

38, 5938~1988!.
@10# N. Schörghofer, L. Kadanoff, and D. Lohse, Physica D88, 44

~1995!.
@11# E. Leveque and Z. S. She, Phys. Rev. Lett.75, 2690~1995!.
@12# R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Masaio

and S. Succi, Phys. Rev. E48, R29 ~1993!.
@13# E. Leveque and Z. S. She, Phys. Rev. E55, 2789~1997!.
@14# P. Ditlevsen, Phys. Fluids9, 1482~1997!.
@15# R. Benzi, L. Biferale, S. Succi, and F. Toschi~unpublished!.
@16# V. S. L’vov, I. Procaccia, and D. Vandembroucq, Phys. Re

Lett. ~to be published!.


